منابع مشابه
Gait Generation and Control of a Hexapod Walking Robot
In this paper, the mechanical structure of a hexapod walking robot is presented and the kinematic model is established. The foot trajectory of each leg, which is optimized by genetic algorithms to minimize energetic cost, was proposed with two different gait patterns applied. Control system was divided into coordination-layer and execution-layer. Coordination-layer, was a PC responsible, for wh...
متن کاملAutonomous Gait Planning for a Hexapod Robot in Unstructured Environments based on 3D Terrain Perception
Legged robots have extremely important applications in unstructured environments, e.g. accomplishing rescuing and detecting tasks in the earthquake and nuclear accidents instead of human beings. In such environments, legged robots must have the potential to plan gaits autonomously based on the site environment without detailed instructions from a human operator. In this paper, we present an aut...
متن کاملGenetic Algorithms for Gait Synthesis in a Hexapod Robot
This paper describes the staged evolution of a complex motor pattern generator (CPG) for the control of the leg movements of a six-legged walking robot. The CPG is composed of a network of neurons. In contrast to the main stream work in neural networks, the interconnection weights are altered by a Genetic Algorithm (GA), rather than a learning algorithm. Staged evolution is used to improve the ...
متن کاملStable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation
In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...
متن کاملTerrain Characterisation and Gait Adaptation by a Hexapod Robot
Legged robots are especially suited for traversing unstructured terrain outdoors. To maintain efficient locomotion, it is necessary to use appropriate gait parameters informed by terrain interactions such as slipping and sinking. Humans and legged animals inherently use this skill when walking. Effectively characterising the terrain with proprioceptive sensing provides information to the robot ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Modern Electronic Technology
سال: 2020
ISSN: 2591-7129,2591-7110
DOI: 10.26549/met.v4i2.5075